Astronomical Telescope Eyepieces

Everything (or at least some) you wanted to know but were afraid to ask.

Considerations

•Your Telescope

•Your Eyes

•Your Use

Your Wallet

Important Terms

Focal length

The focal length of an eyepiece is the distance from the principal plane of the eyepiece where parallel rays of light converge to a single point. When in use, the focal length of an eyepiece, combined with the focal length of the telescope objective, **determines the magnification**. It is usually expressed in <u>millimeters</u> when

referring to the eyepiece alone.

Field of View

The field of view, often abbreviated FOV, **describes the area of a target that can be seen** when looking through an eyepiece. The field of view seen through an eyepiece varies, depending on the magnification achieved when connected to a particular telescope, and also on properties of the eyepiece itself.

Actual field of view

The angular size of the **amount of sky that can be seen** through an eyepiece when used with a particular telescope, producing a specific magnification. It ranges typically between 0.1 and 2 degrees.

Apparent field of view

this is a measure of the **angular size of the image** viewed through the eyepiece, in other words, how large the image appears (as distinct from the magnification). The measurement ranges from 30 to 110 degrees.

Simulation of views through various telescope eyepieces

Left image shows image through an eyepiece with a narrow apparent field of view.

<u>Center image</u> shows image through an eyepiece of the same focal length but wider apparent field of view, and how the image is larger and shows a greater area.

<u>**Right image**</u> shows image with the same apparent field of view as the center image, but shorter focal length giving greater magnification. The result is the same true field of view as the first image but at greater magnification.

The Eye Relief

The eye needs to be held at a certain distance behind the eye lens of an eyepiece to see images properly through it. This distance is called the eye relief.

Two Common Issues

The **kidney bean effect** occurs when the exit pupil is very large and close to the size of eye pupil

This appears to the observer as a giant kidney bean shaped dark region that meanders around the field as head moves.

In some long f.l or wide angle eyepieces, it is sometimes necessary to move the eye closer to the eyepiece in order to see the edge of the field.

The **"blackout" effect** mainly arises with **eyepieces** of large eye relief and exit pupil or barlowing a low focal **eyepiece** such as a 35 mm. Blackouts aren't a characteristic of the eyepiece, <u>they're simply the observer holding his eye too</u> <u>close to the eyepiece</u>.

Optical Designs

Practical Focal Lengths for Eyepieces

Power Range	Eyepiece (f/4 Telescope)	Eyepiece (f/8 Telescope)	Eyepiece (f/10 Telescope)	Eyepiece (f/15 Telescope)
VERY LOW	16 - 28mm	32 - 56mm	40 - 70mm*	60 - 105mm*
LOW	8 - 16mm	16 - 32mm	20 - 40mm	30 - 60mm
MEDIUM	4 - 8 mm	8 - 16mm	10 - 20mm	15 - 30mm
HIGH	2.8 - 4mm*	6 - 8mm	7 - 10mm	10 - 15mm
VERY HIGH	2.0 - 2.8mm*	4 - 6mm	5 - 7mm	7 - 10mm

*Eyepieces in these ranges are not normally practical with a 1.25" barrel.

.965" eyepieces are largely discontinued

Barrel Sizes

How Many Do I Need?

Barlow Lens

(A) without (red) and with (green) a Barlow lens <u>optical</u> <u>element</u> (B)

By using a barlow lens you can get away with having fewer eyepieces in your collection

Filters

Not Oseful Good Extenent Probably the best	Not Useful	Good	Excellent	Probably the Best
--	------------	------	-----------	-------------------

Wratten Number and Color	Moon	Mercury	Venus	Mars	Jupiter	Saturn
<u>#8 Light Yellow</u>	With small telescopes			Maria, Dust clouds	Belts	
<u>#11 Yellow-Green</u>				Maria	Belts	Cassini Division
<u>#12 Yellow</u>			Improves contrast	Maria, Atmospheric clouds	Belts, Poles	
<u>#15 Dark Yellow /</u> <u>Amber</u>	Useful	Daylight	Low contrast clouds	Maria, Dust clouds, Polar regions	Belts, Poles, Festoons	
<u>#21 Orange</u>	Very useful	Daylight surface		Surface edge detail	Belts, Red spot, Festoons	Bands, poles
#23A Light Red		Daylight, Twilight		Maria and surface, Dust clouds, Polar caps	Blue clouds	Blue clouds
<u>#25 Red</u>		Daylight, Twilight	Upper clouds	Maria, Polar caps	Improves contrast	
#29 Dark Red			Terminator	Maria, Polar caps	Moon transits	Clouds
<u>#38A Dark Blue</u>			Upper clouds	Dust storms, Polar caps, Violet clearing	Belts, Red spot	Bands, rings
<u>#47 Violet</u>	Useful		Upper clouds	Clouds and haze above poles		Ring detail
<u>#56 Light Green</u>	Useful		Improves contrast	Dust storms, Polar caps	Red Spot	Bands, Poles
#58 Green	Useful		Improves contrast	Dust storms, Polar caps	Belts	White bands, Poles
<u>#80A Blue</u>	Very useful	Twilight surface	Upper clouds	High clouds, Ice caps	Rills, Festoons, Red Spot	Bands, Poles
#82A Light Blue	Useful	Twilight surface	Upper clouds	Polar caps, Surface	Belt transition	Band transition

Accessories

References

https://en.wikipedia.org/wiki/Eyepiece https://en.wikipedia.org/wiki/Barlow_lens

https://www.astronomics.com/how-to-pickan-eyepiece_t.aspx

https://www.opticsplanet.com/howto/howto-guide-telescope-eyepieces.html

Choosing Eyepieces for your Telescope- Shari

SAS-The-Use-of-Astronomical-Filters

Questions ?

ASTRONOMICAL TELESCOPE EYEPIECES

PowerPoint Created by Richard Cofer